

Modelling the durability of cementitious material at multi-scales

Yushan GU (VTT)

14/03/2024 VTT – beyond the obvious

Contents

- Introduction of cementitious materials at multi-scales
- Thermo-chemo-cracking modelling -- ASR
- Poromechanical modelling -- sulfate attack
- Chemo-mechanical modelling -- drying-carbonation-corrosion
- Reactive-transport modelling -- Interaction with exposure solutions

VTT

Su, H., Hu, J. and Li, H., 2018. Multi-scale performance simulation and effect analysis for hydraulic concrete submitted to leaching and frost. *Engineering with Computers*, *34*, pp.821-842.

Gu, Y., Bary, B., Machner, A., De Weerdt, K., Bolte, G. and Haha, M.B., 2022. Multi-scale strategy to estimate the mechanical and diffusive properties of cementitious materials prepared with CEM II/CM. *Cement and Concrete Composites*, *131*, p.104537.

Thermo-chemo-cracking modelling - ASR

- τ_c : Characteristic time;
- ε^{∞} : Predicted maximum free volumetric expansion or target expansion.

Output

Expansion curve replication

 $\dot{\varepsilon}_{vol}^{AAR}(t) = \Gamma_t(f_t', \sigma_1 | COD) * \Gamma_c(\overline{\sigma}, f_c') * f(h) * \dot{\zeta}(t, \theta) * \varepsilon^{\alpha}|_{\theta = \theta_0}$

- Γ_t : Reduction due to Γ_c : tensile cracking; $\dot{\zeta}(t)$: Impact of temperature; f(h): Impact of RH.
 - Reduction due to compressive stresses;

Fig. 2 Comparison of the simulated expansion curve to experimental data.

Poromechanical modelling of sulfate attack

VTT – beyond the obvious

(GU et al. 2022); Platform: BIL

VTT

Chemo-mechanical modelling – Drying-Carbonation-Corrosion

Input

- Main reactants
- Microstructure
- Boundary conditions

Output

- Phase changes
- Initiation of corrosion

pH value

- Damage propagation
- Carbonation depths

Fig. 3 Phase assemblage of hydrated cement paste calculated by thermodynamic modelling

Assumption: Corrosion becomes active when carbonation reaches the steel surface.

Mass balance equations regarding moisture, CO₂, O₂

Volume changes due to carbonation and corrosion

Coupled with a damage model

Homogeneous concrete with CEM II/C-M (S-LL)

Damage propagation

VTT

Reactive-transport modelling – Interaction with exposure solutions

(SAFER-FN-CAMP)

Input

- Initial mineralogical phases
- Composition of concrete pore solution and exposure solutions
- Boundary conditions (including hydraulic pressure)

- Simplified cement model with a thermodynamic database: CEMDATA v18 – PHREEQC version;
- Initial mineral phases present in the ILW disposal cell;
- Porosity = white space;
- Inert phase in cement-based materials is aggregate;
- pH value is shown on the secondary axis on the right;
- Chemical gradients are produced by the ingress of groundwater and the interfaces among materials;
- Interaction with granite is simplified to a constant advectiondiffusion of groundwater on left and right boundaries with a hydraulic gradient.

Thanks for your attention!

14/03/2024 VTT – beyond the obvious