VTT

Durability design and the performance-based approach behind the upcoming Eurocode 2's Exposure Resistance Class

Miguel Ferreira, PhD, RTL VTT Technical Research Centre of Finland Ltd.

13.3.2024, Anna Kronlöf -tutkijaseminaari

Content

- 1. How do you design concrete for durability?
- 2. From prescriptive towards performance-based design
- 3. Designing with a performance-based approach
- 4. New performance-based code (EN206-100)
- 5. Determining service life for LS crack opening
- 6. Final considerations

1. Quantify the aggressiveness of the environment(s)

1. Quantify the aggressiveness of the environment(s)

Table 1 Exposure classes

Class designa- tion	Description of the environment	nt wh	Informative exampl ere exposure classes m	es ay occur	Class de tio	Class designa- tion Description of the environment			nt	Informative examples where exposure classes may occur	
1 No risk	of corrosion or attack				4 0	Corrosio	on induced	by chlorides from sea	a wat	er	
	For concrete without reinforcement or ded metal: All exposures except where	embed- there is	mbed- here is				containing r ying salt ori	einforcement or other ginating from sea wat	al is subject to contact with chlorides from sea e shall be classified as follows:		
XO	For concrete with reinforcement or emi	bedded	dity		XS1		Exposed to	l and ground water in		ct con-	Structures near to or on the coast
	metal: Very dry			ia	al attack f	rom na	tura	× 43			Parts of marine structures
2 Corros	ion induced by carbonation		alas	ses for chemica	arat		.	A60			Parts of marine structures
Where concrete	containing reinforcement or other embe	dded metal is expo	ues for exposure clas			XAZ		r 000	ing	agents	
XC1	Dry or permanently wet Ta	ble 2 Limiting va	Reference test met- hod	XA1 Cround wat	er	600 and	1≤3000	> 3 000 and ≤ 6 000 < 4,5 and ≥ 4,0	eez	e/thaw cy	cles whilst wet, the exposure shall be classified as
	[[chemical charge ristic		≥ 200 and ≤	600 5,5	< 5,5 at	$d \ge 4,5$ $d \le 100$	> 100 up to saturatio	de	-icing	Vertical concrete surfaces exposed to rain and freezing
XC2	Wet, rarely dry	504 ²⁻ mg/l	EN 190 - ISO 4316	≤ 6,5 and ≤ ≥ 15 and ≤	40	> 40 ai > 30 a	and ≤ 60	> 3 000 up to satur tion	a- 11	ng agent	Vertical concrete surfaces of road structures exposed to freezing and airborne de-icing agents
хсз	Moderate humidity	pH CO2 mg/l aggressiv	re EN 13577 ISO 7150-1	≥ 15 and 3	≤30 ≤1000	>1000	and ≤ 3 000		000	agent	Horizontal concrete surfaces exposed to rain and freezing
204	Conditionent and dam	NH4 ⁺ mg/l	EN ISO 7980	5 200 2	2.000 ^c	> 3 000	° and ≤ 12 0	00 > 12 000 and		at or	Road and bridge decks exposed to de-icing agents;
AC4	Cyclic wet and dry	Mg ²⁺ mg/1	-b	≥ 2 000 an	d≤3000	1	Not encou	intered or r		111.01	Concrete surfaces exposed to direct spray contai-
3 Corros	ion induced by chlorides other than fr	oi Soil	tal EN 196-2-	>2	200	alassi		ation may be used, if			ning de-icing agents and freezing Splash zones of marine structures exposed to freezing
chlorides, includ	ling de-icing salts, from sources other th	an SO4" mg/mg	ng to prEN 16502	whe moved	into a lower	Iternativ	vely, water es	traction	rete		
lows:	0 0 .	Acidity account	ml/kg	m/s may be 2- hy hydro	chloric acid;	aller	1.000	of sulfate ions in the con-		soils a	nd ground water, the exposure shall be classified
XD1	Moderate humidity	Bauman a clay soils with	a permeability	of SO4 of the concrete.	1	a risk of a	ccumulation				
XD2	Wet, rarely dry	b The test meth	available in the place of use	to 2 000 mg/kg, wh	ere there is		6 utily agg	ressive chemical envir	onm	ent	Concrete exposed to natural soil and ground water according to <u>Table 2</u>
		c The 3 000 m	g/kg limit shan occurs and wetting cycles or capi	liary see	XA2		Moderately	aggressive chemical e	nviro	nment	Concrete exposed to natural soil and ground water according to <u>Table 2</u>
XD3	Cyclic wet and dry	cniorides	. Pavements,	containing	XA3	:	Highly aggr	essive chemical enviro	nme	nt	Concrete exposed to natural soil and ground water according to <u>Table 2</u>
1	1	Car nark	sighs								

Table 1 (continued)

2. Consult the design codes for mix design limits Maximum water/binder ratio, Minimum strength class, Minimum cement content, Minimum air content, and Other requirements

	Exposure classes																	
	No						Chloride-induced corrosion											
	risk of corro- sion or attack	Carbonation-induced corrosion			Sea water			Chloride other than from sea water			Freeze/thaw attack				Aggressive chemical environments			
	X0	XC 1	XC 2	XC 3	XC 4	XS 1	XS 2	XS 3	XD 1	XD 2	XD 3	XF 1	XF 2	XF 3	XF 4	XA 1	XA 2	XA 3
Maximum <i>w/c</i> ^c	-	0,65	0,60	0,55	0,50	0,50	0,45	0,45	0,55	0,55	0,45	0,55	0,55	0,50	0,45	0,55	0,50	0,45
Minimum strength class	C12/15	C20/25	C25/30	C30/37	C30/37	C30/37	C35/45	C35/45	C30/37	C30/37	C35/45	C30/37	C25/30	C30/37	C30/37	C30/37	C30/37	C35/45
Minimum cement content ^c (kg/m ³)	-	260	280	280	300	300	320	340	300	300	320	300	300	320	340	300	320	360
Minimum air content (%)	-	-	-	-	-	-	-	-	-	-	-	-	4,0 ^a	4,0 ^a	4,0 ^a	-	-	-
Other require- ments	-	-	-	-	-	-	-	-	-	-	-	Aggregate in accordance with EN 12620 with sufficient freeze/ thaw resistance			_ Sulfate-resist- ing cement ^b			
 Where the offreeze/thay Where sulfastandards. 	¹ Where the concrete is not air entrained, the performance of concrete should be tested according to an appropriate test method in comparison with a concrete for which freeze/thaw resistance for the relevant exposure class is proven. ² Where sulfate in the environment leads to exposure classes XA2 and XA3, it is essential to use sulfate-resisting cement conforming to EN 197-1 or complementary national standards.																	
^c Where the l	$\frac{1}{2}$ Where the k value concent is applied the maximum w/c ratio and the minimum compart content are modified in accordance with 5.2.5.2																	

Table F.1 Recommended limiting values for composition and properties of concrete

VTT

3. Concrete cover (C,min,dur)

Table 4.4N: Values of minimum cover, *c*_{min,dur}, requirements with regard to durability for reinforcement steel in accordance with EN 10080.

Structural Class S1	Exr X		Minimum value for a working life	of concrete cover of 50 years [mm]	Minimum value of concrete cover for a working life of 100 years [mm				
S2 S3 S4	S2 1 S3 1 S4 1	Exposure class	Reinforcing steel	Prestressing steel	Reinforcement	Prestressing steel			
S5	1	XO	10	10	10	10			
S6	2	XC1	10	20	10	20			
		XC2	20	30	25	35			
		XC3, XC4	25	35	30	40			
		XS1, XD1	30	40	35	45			
		XS2, XD2	35	45	40	50			
		XS3, XD3	40	50	45	55			

SFS EN 1992-1-1:2015 Eurocode 2: Design of concrete structures. Part 1-1: General rules and rules for buildings By65 Concrete Code 2021, Betoniyhdistys.

From prescriptive towards performance-based design

- Focus on the mix design
 - QUALITY ASSUMED
 - How is **durability** measured?
 - \rightarrow It is not!
 - How is service life quantified?
 → It is not ASSUMED

Prescriptive

- Deem-to-satisfy requirements
 - Maximum water/binder ratio
 - Minimum cement content
 - Minimum concrete cover

- Focus on performance
 - QUALITY MEASURED
 - How is durability measured?

VTT

- \rightarrow Performance tests
- How is **service life** quantified?
- → Models to verify compliance with limit states

Performance-based

- Performance requirements
 - Penetration resistance (diffusion, carbonation resist.)
 - Minimum concrete cover

Designing with a performance-based approach

Designing with a performance-based approach

Optimization of RC structure performance in marine environment (2010) Engineering Structures - https://doi.org/10.1016/j.engstruct.2010.02.011.

New performance-based code (EN206-100) Concept of Exposure Resistance Classes

- The structural resistance will be given by a combination of:
 - "Exposure Resistance Classes" (ERC) defined in Eurocode-2 and provisions for verification to be given in EN 206-100 (Concrete)
 - Cover to reinforcement to be given in Eurocode-2 (design standard EN 1992-1-1)
 - Curing provisions and tolerances for cover to be given in EN13670 (Execution standard).
- The ERC are defined in two notes in the EN 1992-1-1
 - These definitions represent the interface between Eurocode-2 and the EN 206

New performance-based codes (EN206-100) Concept of Exposure Resistance Classes

- ERC for carbonation designated XRCn
- ERC for chlorides designated XRDSn

	Exposure class (carbonation)											
ERC	X	C 1	X	C 2	X	3	XC4					
	Design service life (years)											
	50	100	50	100	50	100	50	100				
XRC 0,5	10	10	10	10	10	10	10	10				
XRC 1	10	10	10	10	10	15	10	15				
XRC 2	10	15	10	15	15	25	15	25				
XRC 3	10	15	15	20	20	30	20	30				
XRC 4	10	20	15	25	25	35	25	40				
XRC 5	15	25	20	30	25	45	30	45				
XRC 6	15	25	25	35	35	55	40	55				
XRC 7	15	30	25	40	40	60	45	60				

Table 6.3 (NDP) — Minimum concrete cover c_{min,dur} for carbon reinforcing steel — Carbonation

NOTE 1 XRC classes for resistance against corrosion induced by carbonation are derived from the carbonation depth [mm] (characteristic value 90 % fractile) assumed to be obtained after 50 years under reference conditions (400 ppm CO₂ in a constant 65 %-RH environment and at 20 °C). The designation value of XRC has the dimension of a carbonation rate [mm/ $\sqrt{$ [vears]}.

NOTE 2 The recommended minimum concrete cover values $c_{\min,dur}$ assume execution and curing according to EN 13670 with at least execution class 2 and curing class 2.

NOTE 3 The minimum covers can be increased by an additional safety element $\Delta c_{dur,\gamma}$ considering special requirements (e.g. more extreme environmental conditions).

Table 6.4 (NDP) — Minimum concrete cover c _{min}	_{dur} for carbon reinforci	ıg steel — Chloride
----------------	---	-------------------------------------	---------------------

	Exposure class (chlorides)												
EDC	X	S1	XS2		XS3		XD1		XD2		XD3		
EKC		Desig	n servi	ce life (years)	Design service life (years)							
	50	100	50	100	50	100	50	100	50	100	50	100	
XRDS 0,5	20	20	20	30	30	40	20	20	20	30	30	40	
XRDS 1	20	25	25	35	35	45	20	25	25	35	35	45	
XRDS 1,5	25	30	30	40	40	50	25	30	30	40	40	50	
XRDS 2	25	30	35	45	45	55	25	30	35	45	45	55	
XRDS 3	30	35	40	50	55	65	30	35	40	50	55	65	
XRDS 4	30	40	50	60	60	80	30	40	50	60	60	80	
XRDS 5	35	45	60	70	70	—	35	45	60	70	70	-	
XRDS 6	40	50	65	80	—	_	40	50	65	80	_	-	
XRDS 8	45	55	75	_	-	_	45	55	75	_	-	-	
XRDS 10	50	65	80	_	_	_	50	65	80	_	_	-	

NOTE 1 XRDS classes for resistance against corrosion induced by chloride ingress are derived from the depth of chlorides penetration [mm] (characteristic value 90 % fractile), corresponding to a reference chlorides concentration (0,6 % by mass of binder (cement + type II additions)), assumed to be obtained after 50 years on a concrete exposed to one-sided penetration of reference seawater (30 g/l NaCl) at 20 °C. The designation value of XRDS has the dimension of a diffusion coefficient [10^{-13} m²/s].

NOTE 2 The recommended minimum concrete cover values $c_{\min,dur}$ assume execution and curing according to EN 13670 with at least execution class 2 and curing class 2.

NOTE 3 The minimum covers can be increased by an additional safety element Δc_{dury} considering special requirements (e.g. more extreme environmental conditions).

New performance-based codes (EN206-100) Concept of Limit state

* - 50 µm is value indicated for carbonation induced corrosion, and 500 µm is the reference value for chloride induced corrosion.

Determining service life for LS crack opening Example of calculations behind definition of XRC/XRDS

For initiation model:

- CEM I 42.5 N with w/b ratio 0.50
- Not the ideal cement type from a chloride ingress perspective
- For corrosion propagation model two distinct corrosion rates
 - "fast" corrosion process (3.0 $\mu\text{A/cm2})$ 0.035 mm/year
 - "slow" corrosion process (0.3 μ A/cm2) 0.0035 mm/year

Designing concrete durability by coupling limit states of corrosion initiation and corrosion induced cracking of concrete cover (2016) Nordic Concrete Research Journal - https://nordicconcrete.net/wp-content/uploads/2016/11/17972-NCR-nr.-54.pdf

Final considerations

- New generation of codes will allow for performance-based durability design
 - Current approach is prescriptive, which has optimization limitations
- Designer can tailor durability performance to the explicit exposure
 - Currently possible only for carbonation and chloride induced corrosion
- Concrete producer has greater freedom to select appropriate mix design – fulfilling required performance
- Proposed performance-based approach will design for small amount of active corrosion
 - As opposed to current approach which consider damage free

beyond the obvious