Concrete research needs in the future

Short over-view

Jouni Punkki 13.3.2024

Approach

- General view of the recognized research need, not based on the presentation of today
- Broader, practical topics, not going in details
- No solutions are given, just the topics needing research
- Several research needs are connected to others
- Not in order of importance

Contents

- Binders
- Aggregates
- Admixtures
- Concrete production
- Quality assurance and testing of concrete and concrete structures

Present situation -> Research needs

Binders

- a) Very strong pressure to reduce CO₂-emissions of cements
- b) Decreasing availability of effective SCMs

Binders

- 1) Reducing of CO₂-emissions of (portland) cement production
 - Raw materials and energy efficiency
 - Carbon Capture and Storage/Utilization
 - 2) Increasing the use present and <u>new SCMs</u>
 - New blended/composite cements
 - Various ways to use SCMs
 - 3) Development of new non-CaCO₃-based cements

Aggregates

Present situation:

- a) Moving from naturally graded to crushed aggregates (also fine aggregate)
- b) Water demand of aggregate is on relatively high level
- c) Increasing use of recycled aggregates
- d) Transportation of aggregates causes high CO₂-emissions

EFFECT OF WATER DEMAND

- Water requirement of 180 vs 160 dm³/m³
- If w/c = 0,40
- 180 dm³/m³ requires cement 450 kg/m³
- 160 dm³/m³ requires cement 400 kg/m³

Affects:

- CO₂-emission
- Max temperature
- Costs

Aggregates

- 1) Improvements in aggregate quality
 - Reducing the water demand
 - Reducing the natural quality variation
- 2) Increasing use of crushed fine aggregates without increasing the water demand
- 3) Development of small scale production of crushed aggregate
- 4) Development of use of recycled aggregates

Admixtures

- a) New low-carbon binders / concretes need new admixtures
- b) Present concretes are rather sensitive, are admixture increasing or reducing the sensitivity?

Admixtures

- 1) Development of admixtures of low-carbon concrete
 - Accelerators
 - Water-reducing admixtures
 - Air-entraining agents
- 2) Development of special admixtures for binders with low clinker contents
 - Chemical activators
 - 3) Development of admixtures for improving robustness of concrete

Concrete production

- a) Reduction of CO₂-emissions causes challenges in concrete production
- b) Challenges with hydration temperatures (max, diff)
- c) Some processes poorly controlled, e.g. compaction, curing
- d) Level of automatization in concrete construction is on low level, new production methods, e.g. 3Dprinting, wait break-through

Concrete production

Research needs:

1) Development of use of low-carbon concretes

- Strength development, utilization of heat curing and admixtures
- Durability properties
- 2) Other possibilities to reduce CO₂-emissions of concrete
- 3) Managing the hydration temperatures
 - Effects of elevated temperatures, updated limit values
 - Concrete with lower heat development
 - Cooling systems, control of temperatures
- 4) Development of automatization, development of new production techniques (esp. pre-casting)

Quality assurance and testing

- a) High variation in concrete properties. Variation caused by raw materials. Also manufacturing processes cause variation.
- b) QC testing methods are labour intensive and operator sensitive, testing frequency is (very) low
- c) Test methods for durability properties (e.g. freeze-thaw) are relatively poor (long-lasting tests, high variation in results)

Quality assurance

- 1) Development of automated test methods for fresh concrete properties (consistency, air content and w/c-ratio). Both at mixing station and in concrete truck at construction site.
- 2) Methods for controlling compaction of concrete
- 3) Development of more advanced test methods for durability properties of concrete
- 4) Development of NDT-methods

Thank you

Thank You, Anna

