

Content

- Background
- Field stations
- Carbonation results
 - Effect of air content
 - Effect of w/b ratio
 - Effect of different exposure site
 - Effect of SCM's (fly ash, blast furnace slag)
- Summary

Background

- The purpose of field testing is to assess the durability performance of concrete materials in authentic climate conditions
- Climate conditions are difficult to assess and simulate effectively in standardized laboratory tests where individual condition factors are typically altered one at a time
 - Moisture
 - Temperature
 - Solar radiation
 - Salt exposure
 - Carbon dioxide
 - Ageing of concrete

14/03/2024 VTT - beyond the obvi digebook.gom/1000546/5321/591/Rosts/fiengitysliitto.videosync.fi/il 40137242993527/ mastonmuutos-110520?seek=395

Background

- Old durability research projects
 - 1998-2001 Nordic BTB (Durability of de-iced bridge concrete)
 - 2001-2004 EU CONLIFE (High-performance concrete)
 - 2001-2004 EU LIFECON (Life Cycle Management & Sustainability)
 - 2002-2004 Finnish YMP (Environmentally-friendly and Durable concretes)
 - 2007-2008 Finnish DURAFIELD (Concrete durability field testing)
 - 2008-2011 DURAINT (Effect of interacted deterioration parameters on service

life of concrete structures in cold environments)

- 2012-2015 CSLA (Chloride freeze-thaw interaction)
- 2018-2022 EXACT (Effect of excess air entrainment on behaviour of reinforced concrete structure
- 2007-2024 BTT (Demanding concrete structures research)

Field station in Espoo

- Established 2002
 - New location 2018 (due to Espoo city construction)
- Freeze/thaw attack without de-icing agents
 - XF3 high water saturation, without de-icing agent
- Corrosion induced by carbonation
 - XC3 moderate humidity
 - XC4 cyclic wet and dry
- Examples of concretes in field
 - YMPYST- project test series (XC4)
 - K35 and K45
 - Fly ash, furnace slag
 - Duraint-project test series (XC3)
 - 23 concretes
 - w/c = 0.36–0.6

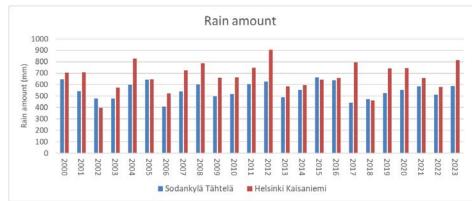
https://www.mapcustomizer.com/

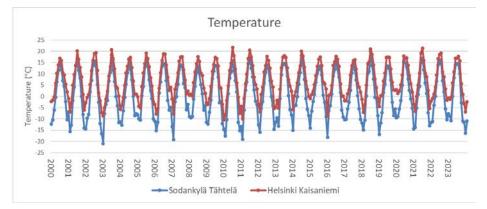
14/03/2024 VTT – beyond the obvious

Kotka

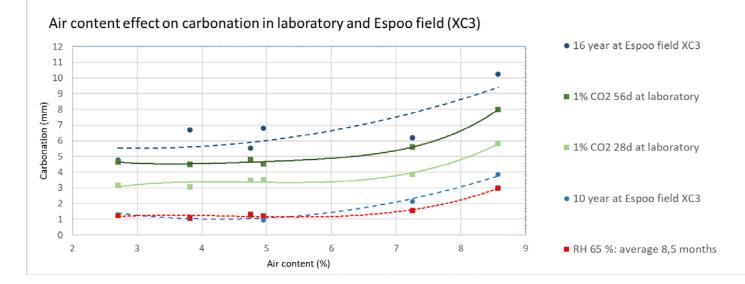
- Established 2008
- Freeze/thaw attack with de-icing agents
 - XF4 high water saturation, with de-icing agent or sea water
- Corrosion induced by chlorides other than from sea water
 - XD3 cyclic wet and dry
- Examples of concretes in field
 - Duraint (w/c 0.42, air entrained bridge concretes)
 - Customers own samples for material development

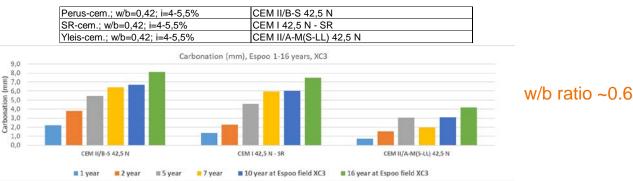
14/03/2024 VTT – beyond the obvious

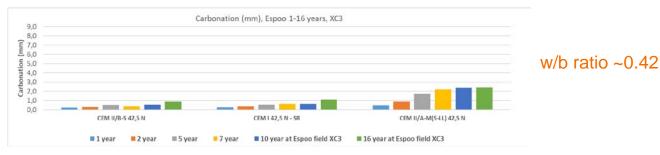

Sodankylä


- Established 2001
- Freeze/thaw attack without de-icing agents
 - XF3 high water saturation, without de-icing agent
- Corrosion induced by carbonation
 - XC4 cyclic wet and dry
- Examples of concretes in field
 - CONLIFE (HPC-betonit)
 - YMPYST (same concretes as in Espoo field)

Comparison between field exposures

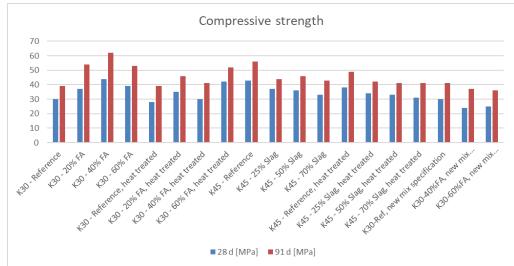



Exposure / information	(symbol)	Kotka HW7	Espoo	Sodankylä	Borås
Freeze/thaw attack, high	XF3		Х	Х	-
water saturation, without					
de-icing agent					
Freeze/thaw attack, high	XF4	х	-	-	х
water saturation, with de-					
icing agent or sea water					
sea water					
Corrosion induced by	XC3		х		-
carbonation, moderate					
humidity					
Corrosion induced by	XC4	-	х	х	-
carbonation, moderate					
Cyclic wet and dry					
Corrosion induced by	XD3	х	-	-	х
chlorides, cyclic wet and					
dry					
Height from the seal level	(m)	20	20	179	-

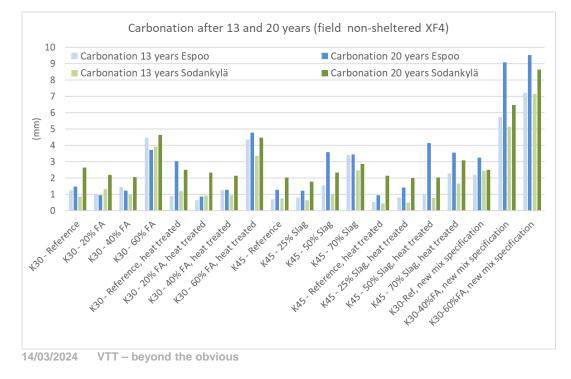

Carbonation results (lab & field) Carbonation results (Espoo, XC3 moderate humidity) Effect of air content

- CEM II/A-M(S-LL) 42.5 N (Yleissementti)
- Air content vary from 2.7 % to 8.6 %

Carbonation results (field) Carbonation results (Espoo, XC3 moderate humidity) Effect of w/b ratio

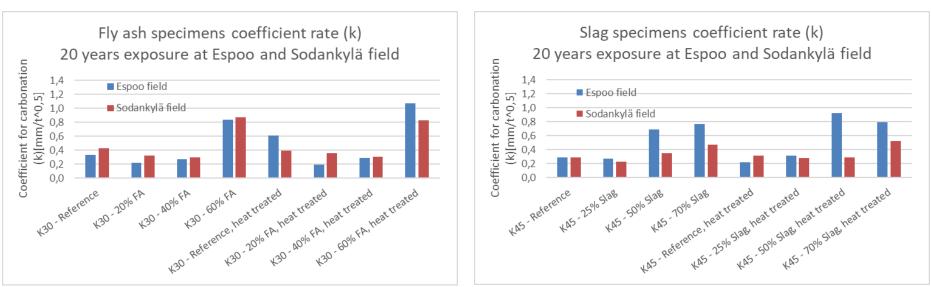


Effect of different exposure sites Carbonation results (YMPYST Espoo & Sodankylä) XC4 cyclic wet and dry

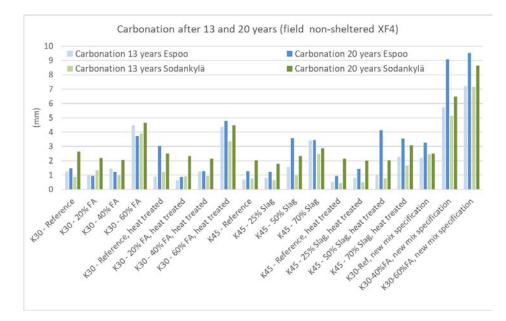

- Different exposure (temperature, precipitation, humidity)
- Two strength classes in YMPYST project
- K30- selected for ready-mix concrete industry
 - The fly ash amounts used were 20 %, 40 %, and 60 %
- K45- selected for precast concrete
 - Granulated blast furnace slag 25 %, 50 %, and 70 %
- Air entrained (6% target)
 - All 8 mixes tested after both normal curing and heat-treated curing.
 - Total of 19 different concretes (2x8, +3)

Effect of different exposure Carbonation results (YMPYST Espoo & Sodankylä) XC4 cyclic wet and dry (w/b ratio 0.5-0.6)

Descriptive code	Ce	ement type	28 d [MPa]	91 d [MPa]
K30 - Reference	Rapid CEM	CEM II/A-LL 42,5 R	30	39
K30 - 20% FA	Rapid CEM	CEM II/A-LL 42,5 R	37	54
K30 - 40% FA	Rapid CEM	CEM II/A-LL 42,5 R	44	62
K30 - 60% FA	Rapid CEM	CEM II/A-LL 42,5 R	39	53
K30 - Reference, heat treated	Rapid CEM	CEM II/A-LL 42,5 R	28	39
K30 - 20% FA, heat treated	Rapid CEM	CEM II/A-LL 42,5 R	35	46
K30 - 40% FA, heat treated	Rapid CEM	CEM II/A-LL 42,5 R	30	41
K30 - 60% FA, heat treated	Rapid CEM	CEM II/A-LL 42,5 R	42	52
K45 - Reference	Pikasementti	CEM I 52,5 R	43	56
K45 - 25% Slag	Pikasementti	CEM I 52,5 R	37	44
K45 - 50% Slag	Pikasementti	CEM I 52,5 R	36	46
K45 - 70% Slag	Pikasementti	CEM I 52,5 R	33	43
K45 - Reference, heat treated	Pikasementti	CEM I 52,5 R	38	49
K45 - 25% Slag, heat treated	Pikasementti	CEM I 52,5 R	34	42
K45 - 50% Slag, heat treated	Pikasementti	CEM I 52,5 R	33	41
K45 - 70% Slag, heat treated	Pikasementti	CEM I 52,5 R	31	41
K30-Ref, new mix specification	Rapid CEM	CEM II/A-LL 42,5 R	30	41
K30-40%FA, new mix specification	Rapid CEM	CEM II/A-LL 42,5 R	24	37
K30-60%FA, new mix specification	Rapid CEM	CEM II/A-LL 42,5 R	25	36



Effect of different exposure Carbonation results (YMPYST Espoo & Sodankylä) XC4 cyclic wet and dry



Effect of different exposure and SCM's Carbonation results (YMPYST Espoo & Sodankylä) XC4 cyclic wet and dry

Effect of different exposure and SCM's Carbonation results (YMPYST Espoo & Sodankylä) XC4 cyclic wet and dry

k = x/√t

Residual service life in 2024 with 25mm concrete cover (years)				
Carbonation in 20 years	Coefficient rate	Total service life	Residual service life in 2024	
(mm)	$k = x/\sqrt{t}$	t=(25mm/k)^2	t-(2024-2003)	
5	1,12	500	479	
10	2,24	125	104	

Exposure class		of concrete cover of 50 years [mm]	Minimum value of concrete cover for a working life of 100 years [mm]		
	Reinforcing steel	Prestressing steel	Reinforcement	Prestressing steel	
XO	10	10	10	10	
XC1	10	20	10	20	
XC2	20	30	25	35	
XC3, XC4	25	35	30	40	
XS1, XD1	30	40	35	45	
XS2, XD2	35	45	40	50	
XS3, XD3	40	50	45	55	

14/03/2024 VTT – beyond the obvious

BY 65

Summary

- Carbonation is slow process especially with good quality concrete
- With high dosages of SCM's carbonation is higher
- Field data can be used in several ways
 - as a reference to improve accelerated laboratory performance tests
 - development of novel laboratory tests
 - to calibrate service life models
- Suggestions for future research
 - To predict which binders could be used after >10 years and expose those at field stations now

Project partners and sponsors: -Finnish Construction Industries (RT) -Finnish Transport Infrastructure Agency (Väylä) -Radiation and Nuclear Safety Authority's (STUK) -Finnsementti Oy -City of Helsinki, Espoo, Vantaa, Tampere, Turku

Ville.Sjoblom@vtt.fi 0401272369_